Opening the Black Box(es)

or, what | wish | had done ten years ago
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A Strange Talk

This is a weird talk: I've found myself getting progressively
more worried about the state of DH, and I’'m using you all as
free therapy.
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Opening the Black Box
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A “Gray” Box

¢ Inference details remain fairly opaque, and can sometimes
be very sensitive to user choices (of number of topics, of
hyperparameters)

e But! At least you can carefully read of intermediates:

top words in topics

top documents for topics

topic probability distributions for selected documents
word probability distributions across topics (!)
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A Significantly Darker Box

e Selection criteria for language models
¢ lack of information about initial training sets

¢ fine-tuning and retraining?
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A Significantly Darker Box

e Selection criteria for language models
¢ lack of information about initial training sets

¢ fine-tuning and retraining?
e Algorithmic details involve more free user choice

e [ntermediates

e context-dependent vectors for each token in the corpus (nope)
e (sometimes) vectors for each document in the corpus (...maybe?)
e final outputs like cluster assignments (sure, but...)



A broader question: What exactly are we
willing to outsource, and to whom?



It is, of course, possible to build expertise in all of these
questions ourselves.

But! Is it possible to do that and still be a subject-matter expert
in our own research areas?
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Have we reached the point at which we can no longer maintain
the full collection of both and skills? Is it
time to consider that we might be forced to divide concerns?
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A Classic Problem

Collaborating with computer scientists tends to be difficult: the
kinds of problems that we want to resolve usually aren’t actually
cutting-edge or innovative in CS terms.

We're boring!
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So what we need to do, it seems, is hire research programmers.
But precious few DH projects in philosophy are going to be big
enough to justify an FTE of programming time.
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Taken together: a strong argument for
constructing our own infrastructure in
digital humanities.



Building Infrastructure



CMU Library Labs (2020-2024)

Executive Summary
Personnel

Identity Statement
Vision
Mission
Values
Goals

Initiatives
Incubator
Schedule & Load

Scott B. Weingart & Matthew Lincoln
Fall 2019 (edited January 2021)

http://dx.doi.org/10.1184/R1/13522718
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Project Incubator

1. Charter Phase (1 sem.): write a project charter and get
everyone on board

2. Incubation Phase (1 sem.): execute on the project charter,
build the project

3. Full Warranty Phase (1 sem.): one further semester of
bug-fix work and production of a report detailing what was
executed
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Project Incubator

4. Maintenance Phase (1 yr.): maintenance-only, ensuring
that the project will continue to function in the same
manner

5. Stewardship Phase (5 yr.+): rolling five-year maintenance
contracts, only to ensure that the project is available
(perhaps in a static or degraded form)
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Projects have to end. Plan now for the
death of your creation.



Bring Money

Storage and basic computing expenses have always been
significant, but still within the range of “normal” grant funding.

This gets worse with LLMs.
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Major computing infrastructure has to be
attached to something durable.



NASA Djscovet, HPC Cluster
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All of a sudden...

...we're not just talking about getting up and running for a
project. If you want to have DH make up a sustainable part of
your career, you'll need to either be somewhere with this
infrastructure, or build and maintain it yourself.
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Summing Up



Two Main Worries

1. Can we keep up with the
without bringing in external collaborators?

2. Can we cultivate those collaborations (and pay for them)
without building

(and what can you do if you don’t have that infrastructure to begin with?)
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Questions?

charles@charlespence.net e https:/pencelab.be e (@ @pence@scholar.social
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