Tracing Disagreement in Taxonomy

Charles H. Pence • @@pence@scholar.social SPS, 2025-09-11

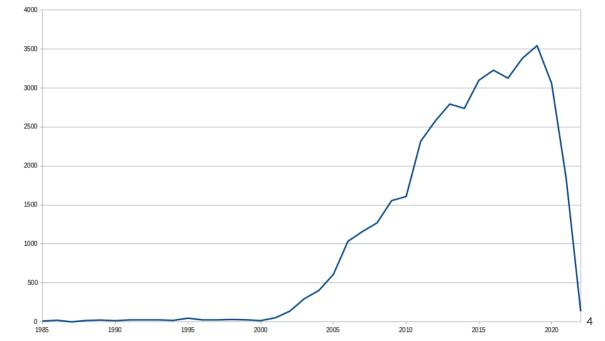
Outline

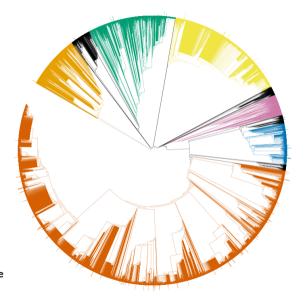
- 1. Briefly: the problem
- 2. Construction of the corpus
- 3. Feature analysis
- 4. Preliminary results
- 5. Future ideas

Take-home message: Disagreement in taxonomy seems to be unevenly distributed; to understand it we'll have to analyze the literature empirically

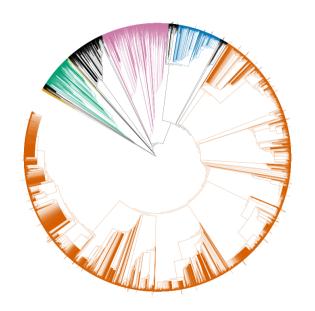
The problem

Briefly: taxonomy is often taken to be affected by a widespread problem of rampant uncertainty and disagreement


Part of the vast ornithology collection at the American Museum of Natural History.

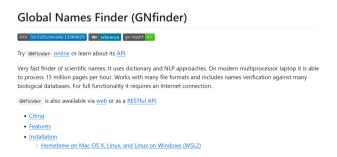

Taxonomy anarchy hampers conservation

The classification of complex organisms is in chaos. **Stephen T. Garnett** and **Les Christidis** propose a solution.


Corpus construction

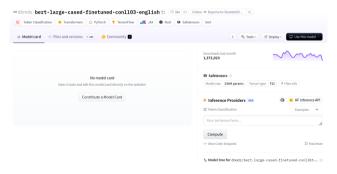
Journal	Publisher	Size
Zootaxa	Magnolia Press	31,348
ZooKeys	Pensoft	4,940
PhytoKeys	Pensoft	820
Journal of Hymenoptera Research	Pensoft	382
MycoKeys	Pensoft	315
Zoosystematics and Evolution	Pensoft	153
Insecta Mundi	Center for Systematic Entomology	1,367
European Journal of Taxonomy	Museum National d'Histoire Naturelle	1,105

Whole Open Tree of Life



Corpus

Feature Analysis


Taxa

Global Names Finder (gnfinder): detect the names of species and other groups in text, both by comparison with global lists as well as detection of "probable" names

Locations

Pre-trained model for recognizing locations, organizations, and people in an English-language text (trained by the Bayerische Staatsbibliothek)

Topic Modeling

Convert documents into vectors in a 400-dimensional space (using the doc2vec algorithm), then examine clusters in this space. Normally, each cluster corresponds, more or less, to a subject of discussion.

Topic Modeling

But: less useful than usual in this corpus! Often, the clusters indicate how scientists talk about different groups of organisms ("fin, ray, gill, dorsal..."), though some might have a more interesting meaning ("barcoding, biodiversity, DNA...").

Disagreement

Close-reading of articles where we're sure that taxonomists are disagreeing with each other, to extract lists of keywords.

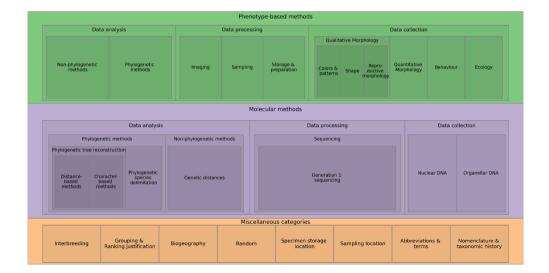
Désaccord

Example: the disagreement list

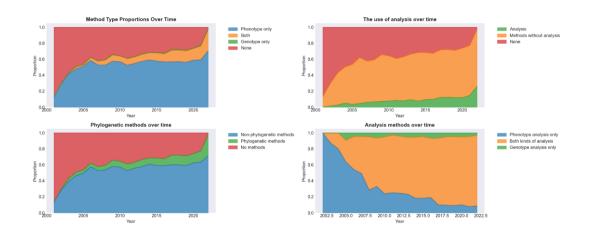
- critique
- doubt
- opinion
- disagree
- redundant
- reject
- rebuttal

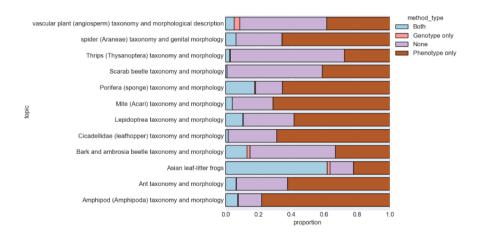
- debate
- invalid
- misunderstanding
- misconception
- allegation
- allegedly

- mistake
- obsolete
- error
- misclassify
- erroneous
- contentious

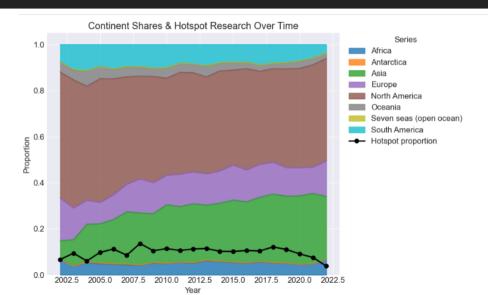

Disagreement

3 lists: epistemic values, disagreement, and pejorative evaluation Measure the relative frequency of these words in each article to give them a kind of "disagreement index."


Difficult to detect in taxonomy:


- No "standard" citations for each method
- Different traditions of research (per taxon) = different terminology
- No tradition of describing your methods clearly (exploratory science)
- Lots of amateurs and researchers distributed across the world

- 1. Lay out a general, hierarchical structure of methods
- 2. Isolate the "methods" sections
- 3. Exploratory analysis with topic modeling of these sections
- 4. Manual labeling of the paragraphs of these sections
- 5. Finalize the classification
- 6. Train classifiers/LLMs to classify the rest of the methods-paragraphs



Preliminary results

Taxonomic attention

Disagreement and taxa

Divide organisms into "colloquial" groups (e.g., mammals, fish, birds, ...).

- Lots more disagreement (> 2×): birds (n = 333); mollusks (n = 1064)
- A bit more (> 1.25×): mammals (n = 396)
- A bit less ($< 0.75 \times$): fish (n = 2132); non-insect arthropods (n = 7285)
- A lot less ($< 0.5 \times$): prokaryotes (! n = 13)

Disagreement and taxa

Second hypothesis: What about the age of the group? Test the correlation between the "disagreement index" and the year in which the main genus in the article was described.

We expect a **negative correlation**: the older the group, the more we argue about it.

Disagreement and taxa

Confirmed: significant negative correlation

An article on a genus described in 1750 should have a disagreement-index around 0.003 higher than one on a newly described genus (and 0.003 is around the mean disagreement index overall!).

Future ideas

Future ideas

- Correlations with places discussed (and especially eco-regions, biomes, etc.)
- In-depth analysis (close-reading) of changes in methodology with time and across taxa
- Construction of a "high-disagreement" corpus, then analysis of it to detect (maybe?) different senses/kinds of disagreement

Thanks to Stijn Conix, Tom Artois, Marlies

Monnens, and Laura Vanstraelen!

Questions?

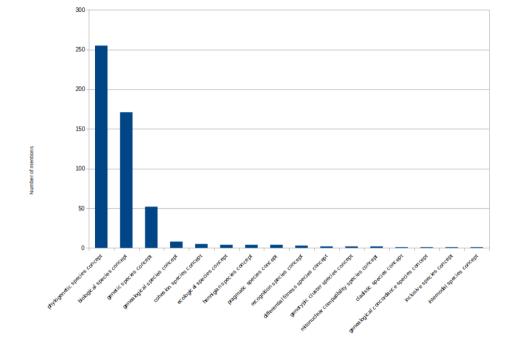
charles@charlespence.net • https://pencelab.be • @ @pence@scholar.social

Un problème avec les endroits

On ne peut faire de l'analyse des mots qui décrivent des endroits! Il faut les convertir en coordonnées latitude/longitude. Et faire cette conversion avec les outils normaux (reverse geocoding) est très cher.

Alors, utilisons un index géographique!

Index géographique


Extrêmement lent:

- 1. Téléchargez une liste des endroits et leurs coordonnées
- 2. Mettez le tout dans une base de données
- 3. Cherchez pour des résultats exacts
- 4. Sinon, cherchez pour des résultats approximatifs
- 5. S'il y en a plusieurs, calculez le «centre géographique» de l'article entier et prendre le résultat le plus proche

Concepts d'espèce

Phylo-Phenetic Species Concept Phylogenetic Species Concept **Genic Species Concept Cohesion Species Concept** Genealogical Concordance Species Concept Genotypic Cluster Species Concept **Genetic Species Concept Ecological Species Concept Recognition Species Concept Genealogical Species Concept**

Biological Species Concept Differential Fitness Species Concept Compilospecies Concept Cladistic Species Concept Hennigian Species Concept Internodal Species Concept Mitonuclear Compatibility Species Concept **Pragmatic Species Concept Inclusive Species Concept Biosimilarity Species Concept**

