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The take-home: Topic modeling can be useful for mapping a concept, but
we need to be attentive to its failure modes!
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Why Topic Modeling?
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Topic Models

An unsupervisedmethod to reduce a corpus of documents to
a smaller collection of topics that are human-interpretable.
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The Usual

Normally taken to be a way in which you can learn what your
corpus is about. What subjects are discussed, where, and by

whom?

My goal today: Can we use the same idea to understand the
content, nature, and change of concepts across a corpus?
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Basic Topic Modeling
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Case Study

How should we understand the concept of specificity in the
life sciences?
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Topics with ‘Specificity’
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Topics with ‘Specificity’

Take the top six of those topics and look at their evolution
over time, as a proxy for different senses of the term in the

literature.
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Topics with ‘Specificity’
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Challenges

Of course, topics involve lots of probable words! So we’re not
looking at definitions of a concept so much as contexts of

usage of a term. Question: What can those teach us?

Also: What to do with concepts that go by multiple names?
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Dynamic Topic
Modeling
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Dynamic Topic Models

In a normal topic model, the probability for a word in a topic
is fixed across the corpus.

Dynamic topic models: divide the corpus into chunks, here
corresponding to time-periods, and allow those probabilities

to vary (Blei and Lafferty 2006).
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Dynamic Topic Models

Intuitively: a way to say that some topic is the same topic over
time, while particular words become more or less important

for that topic.

Or, following my project here: to track shifting conceptual
commitments within a field?

Charles H. Pence Dynamic Topic Modeling 14 / 33



A Case Study

The concept of progress in evolution — explored
through the journal Evolution
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Progress in Evolution

Two topics that have non-zero probabilities for ‘progress’:
● E-Theory (13): Prior to 1970, picks out theoretical papers
in evolutionary biology; then especially book reviews (as
the “most theoretical” content in the journal); then
public-facing
● E-Models (17): Formal modeling results in evolutionary
theory
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Changes in Words
E-Theory, 1949 vs. 1979:
Increasing Words Decreasing Words

book: +0.003514
theory: +0.002712
chapter: +0.002214
evolutionary: +0.001942
biology: +0.001718

time: -0.001870
primitive: -0.001693
know: -0.001582
genera: -0.001557
rodent: -0.001523
(...)
man: -0.001212
modern: -0.000710
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Challenges

● Disentangling changes in topic assignation from changes
in topic content
● Interpreting the disappearance of something from the
corpus
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Correlating Topics
and Features
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Taxonomy Corpus

A corpus of around 40,000 articles in biological taxonomy.

Idea: What if we correlate the presence of particular features
in the documents (like reference to different species, or to

different concepts of what a “species” is) to topics?
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Topic-Feature Correlation
Topic 16: popular in mammals

● 0.027*"colombia"
● 0.016*"specie"
● 0.013*"type"
● 0.013*"peru"
● 0.010*"locality"
● 0.010*"venezuela"
● 0.010*"ecuador"

● 0.009*"panama"
● 0.008*"distribution"
● 0.007*"brazil"
● 0.007*"key"
● 0.006*"rica"
● 0.006*"del"
● 0.006*"costa"

● 0.006*"genus"
● 0.006*"male"
● 0.006*"america"
● 0.006*"san"
● 0.006*"neotropical"
● 0.005*"cat"

Okay: Central and South American collection sites
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Interesting Correlations
Topic 9: traditional specimen collection terms

● 0.029*"specie"
● 0.012*"forest"
● 0.012*"habitat"
● 0.010*"area"
● 0.008*"find"
● 0.007*"collect"
● 0.007*"site"

● 0.007*"study"
● 0.007*"record"
● 0.006*"population"
● 0.006*"range"
● 0.006*"high"
● 0.005*"specimen"
● 0.005*"occur"

● 0.005*"know"
● 0.004*"individual"
● 0.004*"region"
● 0.004*"number"
● 0.004*"sample"
● 0.004*"distribution"

Popular in every taxon except non-insect arthropods, fish, and fungi.
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Interesting Correlations
Topic 64: molecular phylogenetics

● 0.021*"specie"
● 0.017*"sequence"
● 0.016*"analysis"
● 0.011*"molecular"
● 0.010*"dna"
● 0.008*"phylogenetic"
● 0.007*"tree"

● 0.007*"clade"
● 0.007*"gene"
● 0.007*"specimen"
● 0.007*"study"
● 0.007*"morphological"
● 0.006*"support"
● 0.006*"group"

● 0.006*"genetic"
● 0.006*"coi"
● 0.006*"datum"
● 0.006*"base"
● 0.005*"table"
● 0.005*"population"

Among the top-20 most significant probabilities in reptiles and
amphibia, birds, fish, fungi, and mammals; top-5% in every other group

Charles H. Pence Correlating Topics and Features 24 / 33



Troublesome Correlations
Topic 31:

● 0.016*"male"
● 0.016*"genitalia"
● 0.013*"specie"
● 0.009*"female"
● 0.009*"fig"
● 0.008*"brown"
● 0.008*"lepidoptera"

● 0.007*"scale"
● 0.007*"long"
● 0.006*"slide"
● 0.006*"white"
● 0.006*"line"
● 0.006*"new"
● 0.006*"bursae"

● 0.006*"short"
● 0.005*"dark"
● 0.005*"coll"
● 0.005*"forewing"
● 0.005*"holotype"
● 0.005*"leg"

Cautious hypothesis: Lepidopteran anatomy, especially reproductive
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Troublesome Correlations

But wait.

Our lepidopteran reproductive anatomy topic is unusually significant in
one group... in papers that mention molluscs.

...what?
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One Hypothesis?

bursa copulatrix, Leptophobia aripa

genus Bursa, Bursa granularis

Charles H. Pence Correlating Topics and Features 27 / 33



Boring Correlations

● Topic 22 (fish anatomy): prevalent in fish
● Topic 32 (reptile anatomy): prevalent in reptiles,
amphibians, fish
● Topic 83 (beetle anatomy): prevalent in insects
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Even More Boring Anti-Correlations

● Topic 2 (insects/worms): anti-correlated with fish
● Topic 11 (jewel beetles): anti-correlated with mammals
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Challenges

● Is there some way to sort the boring stuff from the
non-boring stuff? (Lots of classic significance tests don’t
seem to do it.)
● Can we recover useful anti-correlations or are they
doomed to be boring?
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Some Morals?
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Some Morals?

Getting from text to concepts will of course never be easy –
I’ve ignored a variety of issues in linguistics here as well.

What are the uses of the kind of cartography that we can do
in these contexts? How can we best put it in dialogue with

traditional close reading?
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Questions?

charles@charlespence.net
https://pencelab.be
@pence@scholar.social
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