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Abstract. We often hear that evolutionary theory tells us that the history of life
has been directed by the whims of randomness, or even that ‘we are here by
chance’. At the same time, evolutionary theorists often construct models of
evolution that are taken to be predictive, and geneticists and molecular biologists
occasionally offer us extremely accurate predictions of molecular-level evolutionary
change. How should we understand this interaction between prediction and
randomness? I will explore here one particular kind of prediction – predictions
on the basis of quantitative estimates of fitness – in light of both the data that
we need to draw those predictions and some recent mathematical work on
the impact of chaos on evolutionary models, with the aim of examining what we
might still be able to say about the predictability of the future of life in an evolving
world.
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1. Introduction

Critics of evolutionary theory, especially those of a creationist bent, often argue that
evolution is a ‘random’ process. An analogy especially prominent in the
conservative-Christian area where I grew up likens the development of complex
traits by evolution to the possibility that a tornado passing through a junkyard
would miraculously assemble a jet aeroplane. Of course, even the most superficial
understanding of evolutionary theory makes it clear that natural selection is the
very opposite of a random process – as Darwin himself put it, with more than a
little anthropomorphisation, natural selection is ‘daily and hourly scrutinising,
throughout the world, every variation, even the slightest; rejecting that which is
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bad, preserving and adding up all that is good; silently and insensibly working,
wherever and whenever opportunity offers, at the improvement of each organic
being’.1

But to say that some of these refined products of evolution – that is,
evolutionary adaptations – are non-random is a far cry from saying that the course
of evolution itself is non-random, or, in different terms that will be my focus here, that
the process of evolution is predictable. As is well known, mutation, which provides
the ‘raw material’ on which selection acts, is a paradigmatically random process, and
evolution is not an optimizing, omniscient designer, but rather a tinkerer that
‘makes do’ with the material at hand in any given biological scenario.2 This and
other features of evolution, are often cited to bolster the idea that evolution,
whether at the micro- or the macro-level, is an unpredictable phenomenon.
At the same time, biologists regularly produce mathematical models of

evolutionary change that offer us predictions. Minimally, quantitative calculations
of the evolutionary fitness of traits – of their expected growth rates in the future,
for instance – seem to be useful in predicting evolutionary outcomes, a sense of
fitness that has been baptized ‘predictive fitness’ (or ‘mathematical fitness’) in the
philosophy of biology literature.3 An implicit contrast is to be drawn here with
‘vernacular’ or ‘ecological’ fitness, which captures the more general idea that
organisms with traits that ‘fit’ the environment better will go on to greater success.
While this latter notion is difficult to formulate precisely enough to provide clear
foresight (after all, there are many ways to ‘fit’ with the environment), predictive
fitness is taken to offer us quantified, expected future changes in traits or genes. In a
more complex vein, work on the genetic basis of evolution has been used to predict
future sites of evolutionary change, in an intricate interaction between genetic
regulation, the biochemical function of particular genes, and population genetics.4

This apparent tension over the status of evolutionary prediction has long been
noted by philosophers of science. As early as the 1950s, Michael Scriven argued (in
Sciencemagazine, no less) that despite the fact that we might wish that evolutionary
theory supported grand predictions, ‘its great commitment and its profound
illumination are to be found in its application to the lengthening past, not the
distant future: in the tasks of explanation, not in those of prediction’.5 Rasmus
Winther, in opposition, has claimed that selection does, indeed, exhibit just the
kind of prediction that we would expect from a successful scientific theory – that
is, risky predictions of surprising, novel phenomena.6

How ought we square this circle? What is the relationship between evolutionary
predictability and the evolutionary randomness that seems to threaten it? In this
paper, I’ll explore that connection by focusing on one class of evolutionary
predictions, already introduced in outline above: What can we infer from the claim
that one trait is fitter than another in a particular model of mathematical fitness? Put
more colloquially, just how predictive is predictive fitness? Two lines of argument are
relevant here. First, I’ll consider what sort of data we might be able to obtain to
derive our estimates of predictive fitness in various types of evolving populations.

Charles H. Pence

158



Then, I’ll present some challenging results from evolutionary modelling that cast
doubt on the predictability of at least several kinds of evolutionary change.
As wewill see, the overall appraisal is mixed: while prediction will be possible in a

few cases, it seems as though evolution makes a number of situations predictively
intractable, either becausewe can never collect enough data about them, or because
they are too random, or more precisely too chaotic, to permit prediction.
Evolutionary predictions, at least of this sort, will be reasonably rare and hard-won.

2. On Prediction

What kind of prediction are we making when we say that, for instance, one trait has
a higher fitness value than another and, thus, we predict that it will increase in
frequency over time?7 The outlines of a general answer to this question have been
offered by Richard Lewontin. What it means, he says, to ‘have an evolutionary
perspective on a system’ is to be ‘interested in the change of state of some universe
in time’.8 What we want is information about the future transformation of the
system: what is the function that tells us how we get from the system’s current state
to its future states? In Newtonian mechanics, for instance, this would be an
equation like F = ma, with which we are all familiar from secondary-school
physics: if we know about the relevant forces and masses, Newton’s second law tells
us what will happen to an object as we move forward in time.
In realistic cases for complex sciences such as evolution, we cannot pursue the

precise form of this transformation (as we perhaps could if we were working with
Newtonian forces). Rather, in Lewontin’s terms, we set some ‘tolerance limits’ on
system states, such that any two states that are similar enough to one another will be
regarded as indistinguishable, making the problem more tractable.9 And these
tolerance limits are almost always a matter of debate in evolutionary biology. Dowe
just want relative predictions about one trait doing better or worse than another?
Or do we want precise, numerical predictions? When we combine this with the
practical difficulty of determining the real-world values of the evolutionary
parameters that govern the behaviour of populations, the problem is made all the
more difficult.10

Let’s zoom in on the kinds of predictions that I want to target here: predictions
about the future state of an evolving system based upon the mathematical fitness
values of traits. How do these predictions work? One more observation from
Lewontin is salient. In the final, emphasized claim with which he concludes his
discussion of prediction, he notes that

the sufficient set of state variables for describing an evolutionary process within a
population must include some information about the statistical distribution of
genotypic frequencies. It is for this reason that the empirical study of population
genetics has always begun with and centered around the characterization of the
genetic variation in populations.11
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Because the stock-in-trade of population genetics is the description of the distrib-
ution of characters in a population – the distribution of gene frequencies – then
the predictions that population genetics makes will have to involve those same
statistical distributions. Predicting with fitness, then, is about finding the right kind
of estimation of future population behaviour on the basis of our current knowledge
of the distribution of characters.
A variety of authors have argued that providing these kinds of predictions is the

primary reason that a fitness concept is worth having in evolutionary theory at all.12

We can even see mathematical fitness used as a medium-to-long-range predictor in
biological works, such as those from the Long-Term Evolution Experiment run by
Richard Lenski and colleagues over a period of decades. Their experimental
population of E. coli bacteria began without the ability to use citrate as a carbon
source, but after several thousand generations, one lineage evolved this capacity, and
with it, a significant mathematical fitness advantage (measured, in this case, by an
increase in growth rate). Lenski and colleagues then explored the contingency and
path dependence of this result – confident, at any rate, that the evolution of citrate
metabolism could now be predicted in the history of this and other lineages.13

If, as I will argue, the predictions that fitness in fact offers us are of mixed quality
at best, then the primary role of fitness must not be predictive, pace these authors.14

By extension, the theoretical arguments and practical orientation toward fitness that
they exhibit must be mistaken. But we must start with a more general question:
what do we need in order to be able to draw quality predictions from models in
population genetics? I’ll focus on two features here, each of which gives rise to the
opportunity for predictive failure. First, we need to be in possession of a sufficient
sample of the possible relationships between the trait and all the various environ-
ments and interactions which it might encounter. Second, the models themselves
need to be structured such that these predictions are formally coherent. As we’ll see,
neither of these features is guaranteed.

3. Getting to Fitness Values

Individual organisms and their traits, as Elliott Sober poetically phrased the matter,
‘taste of life but once’.15 At the extreme, attempting to make a prediction on the
basis of the particular life actualized by one organism gives us the smallest possible
‘sample size’: an organism will only realize precisely one of the myriad possible lives
that it could have lived, the rest consigned to the dustbin of unexplored possibilities
by a host of influences, many of which we might, not unjustly, call ‘random’.16

Such an inference is therefore extremely unlikely to accurately predict the ‘real’
mathematical fitness value of any of that organism’s traits. In natural populations,
we may be able to sample a number of similar, or even clonal, organisms,17 raising
this sample size slightly, but it is still likely to be an unrepresentative sample of the
space of possible lives, leading once again to prediction from insufficient data.
For instance, these natural populations will only likely encounter a small set of
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environmental conditions and other organisms. It is unlikely that these will form a
representative sample of the set of all such interactions.
If we turn to the predictive fitness values of traits in larger populations instead of

estimating from smaller groups, the outlook gets a bit better. When we think about
traits as forming classes or groups of individuals, we will have more organisms
available to measure, although the definitions of ‘trait’, ‘class’, ‘type’, and similar
terms in this context remain controversial.18 At a high enough level of abstraction,
moving to general types rather than specific traits (‘brown fur’ as a type in mice,
say), we might well be able to achieve medium-sized samples, from which we could
argue that we have reasonably well estimated the fitness of the trait at issue.
The best possible sampling of the distribution of evolutionary outcomes will

occur when we define fitness as the fitness of broader types, andwe have a typewith
a vast, vast number of instances, and they are all available to measure, at least in the
aggregate. For example, consider the ‘digests citrate’ type in the population of E. coli
bacteria in the Long-Term Evolution Experiment. This type was expressed not just
billions of times in the evolving laboratory population itself, but re-expressed
billions of times more as the bacterium was thawed from the group’s historical
library of colonies and tested to see how often the citrate type would reappear.19

Here, plausibly, we may have a representative sample of the probability distribution
associated with all of that type’s outcomes. But this kind of prediction only allows
us to overcome evolution’s unpredictability in an extremely limited set of
circumstances, one which will not be applicable to the majority of potential uses
of predictive fitness.
It’s important to be clear about the way in which I’m claiming that these kinds of

fitness predictions sometimes fail (Table 1). To be sure, biologists have an enormous
‘toolbox’ of models of most of evolution’s central concepts, including fitness.20

Given a particular set of data, one of those models will be preferable – it will
provide the best prediction available in the circumstances. But that’s not the kind of
worry that I’m trying to indicate here. However clever we might be in constructing
models, we in many situations may find ourselves unable to supply those models
with the correct kinds of data, as we can only access small, unrepresentative samples
of the total distribution of possible outcomes at issue. This makes it unlikely that
predictive fitness can give us any real-world predictive power, outside of cases like
type-fitness in experimental evolution. We simply won’t be able to collect enough
data about the individuals or traits involved to be able to offer good predictions.

4. Chaotic Population Dynamics

Things become even more complex when we take into account some recent work
on chaotic population dynamics derived in mathematical biology, offering us yet
another way of analysing how evolving systems might be said to be random. Most
models of fitness take, as one of their background assumptions, the claim that
evolutionary dynamics are non-chaotic (even if this assumption is not often made
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explicit). That is, organisms or populations that are very similar to each other – that
are now close to one another in phenotypic space – will remain so as they evolve
over time, unless the environment changes. This assumption is necessary for many
of the basic mathematical models of fitness to take on stable values. It would be
valid in all evolving populations if it were the case that, as Joel Cohen has argued,
‘under reasonable conditions, which are likely to be satisfied in demographic
applications’, chaotic population dynamics were not present.21 What we need,
then, is some way to determine just how likely chaotic dynamics are in real-world
populations. Will chaotic population behaviour regularly, or only rarely, frustrate
our predictions?
As it turns out, a simulation approach to answer precisely this question has been

developed by Michael Doebeli and Iaroslav Ispolatov. They begin by noting that
evolution is almost always seen as a kind of optimizing process in phenotype space,
‘a dynamical system that converges to an equilibrium’, with unpredictability over
long time scales ‘usually attributed to changes in the external environment causing
shifts in evolutionary optima’.22 Given enough time, we take it that evolution will
not only find a solution to a given environmental challenge, but will find some-
thing approaching the best solution available (granted, of course, the constraints
of development and the environment). Similar points have been made by
philosophers in other contexts – for example, when discussing the nature of
evolutionary contingency.23 In a stable environment, one tends to expect stable and
predictable results; we therefore would be inclined to think that it is environmental
change, not any inherent randomness in evolutionary dynamics, that might pose
problems for our ability to predict those results. As Doebeli and Ispolatov note, this
kind of perspective can be tied fairly directly to implicit assumptions (about which

Table 1. Inferential bases and sample sizes/conditions for various definitions of
individual and trait predictive fitness.

Fitness Measure Inferential Basis Sample Size/Character

Trait fitness, including
environmental and
pleiotropic effects

One trait-history Very small,
unrepresentative

Trait fitness, including
similar traits

A small number of
trait-histories in similar
environmental conditions

Small, likely
unrepresentative

Type fitness, natural
populations

A moderate number of
type-histories in similar
environmental conditions

Moderately-sized, possibly
representative

Type fitness, experimental
evolution

A huge number of
type-histories in nearly
identical environmental
conditions

Large and representative,
high-quality predictions
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more later) that evolution is a process optimizing for (mathematical) fitness. But as
their work shows us, that picture will often fail.
Their approach hinges on introducing to the traditional conception of fitness

two features of evolution that are well understood, reasonably common in natural
populations, but not often explicitly considered in mathematical models. The first
is density-dependent selection. A relatively elementary evolutionary phenomenon,
density-dependent selection occurs when the extent to which a given trait is
advantageous depends upon how dense the population currently is.24 Cichlid fishes
of the same colour, for example, seem to compete intensely for habitat, thus
giving a density-dependent advantage to males of rare colours. This advantage may
even have been strong enough to drive speciation events.25 Quite a few natural
populations will undergo density-dependent selection, as it is implicated in
population regulation, the core set of ecological processes which keep populations
at fluctuating yet reasonably bounded sizes over time.26 Brook and Bradshaw
estimate that across a sample of some 1,198 species, between 75 and 92 percent
exhibited evidence of density-dependent demographic processes.27

The second complicating factor is the high dimensionality of phenotype space in
natural populations. We know that in most organisms, the number of phenotypic
components – that is, elements of the organisms’ displayed characters – which
contribute to individual fitness is incredibly large. Further, thanks to recent
theoretical work by biologists such as Sergey Gavrilets, we know that evolutionary
outcomes on high-dimensional ‘fitness landscapes’ can often differ not just in
degree from those on simpler, low-dimensional landscapes, but can differ in kind,
producing novel varieties of system behaviour, including more rapid speciation and
increased neutral evolution.28

The main contribution of Doebeli and Ispolatov’s work, then, is the derivation
and simulation of a general mathematical model that can take both of these features
of real-world population dynamics into account, an important advance for captur-
ing change in natural populations. They proceed to derive an equation for trait
dynamics over time, in terms of the dimensionality of the phenotype space, the
frequency of each trait, and a number of constants. If organisms do not compete at
all, then no change is possible: the population remains at its initial equilibrium. The
question, then, is under what circumstances – that is, under what choice of
competition constants and for what dimensionalities of phenotype space – do we
see long-term chaotic evolutionary dynamics? Evaluating the space of plausible
parameters in this model should be able to give us a reasonable estimate of how
likely chaotic population dynamics are in general.
Shockingly, for even relatively small dimensionalities (with respect to the

extremely high values we might expect in natural populations), chaotic behaviour
is nearly certain. In fact, ‘the probability of chaos increases with the dimensionality
d of the evolving system, approaching 1 for d � 75.29 Even for much smaller
dimensionalities (on the order of 15), the trajectories become what is known as
ergodic – that is, in the long run, they visit nearly every region of phenotype space.
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It is important to realize just how different this model’s results are from the
traditional picture of long-term evolution. As Doebeli and Ispolatov’s model does
not take account of change in the external environment, it allows us to conclude
that even if the external environment is constant, the assumption of density-dependent
selection and a reasonably high-dimensional phenotype space results in chaotic
dynamics. Further, the difference between any two closely spaced trajectories may
not be detectable for a long period of time – that is, the trajectories may evolve
down an indistinguishably similar path for quite some time before diverging wildly.
They thus exhibit the sensitive dependence on initial conditions that is so common in
chaotic systems. This is very much not the process of optimizing toward the single
point in the space with highest fitness, as we might have expected.
If chaotic dynamics of this sort hold in at least some natural populations, as

Doebeli and Ispolatov argue, it is unlikely that it makes sense to speak of any of the
products of evolution in those populations as the result of an optimizing process,
regardless of which quantity evolution is taken to optimize. And this is true in spite
of the fact that, at every step, the only process driving population change is adaptive.
Further, it is unlikely that it makes sense to say that any of the products of evolution,
even those which appear to be currently highly adaptive, would have been
predictable, thanks to the process’s sensitive dependence upon its initial conditions.
If Doebeli and Ispolatov’s model is widely applicable (about which more in a

moment), is there any remaining argument to be made for prediction in cases of
chaotic dynamics? The inference from chaos to unpredictability cannot be made too
hastily. At best, it is more likely that actual outcomes will diverge exponentially from
predicted values. As Charlotte Werndl has masterfully argued, what makes
prediction different in chaotic systems is the fact that ‘all sufficiently past events
are approximately probabilistically irrelevant’.30 Such a conclusion in noway makes
it impossible to provide (in at least some sense) predictions for chaotic systems.
What is undoubtedly the case, however, is that in chaotic cases, a single

prediction – like onewe make on the basis of the mathematical fitness of a trait – is
unlikely to reflect the future behaviour of a system.31 Rather, to the extent that we
are able to predict anything at all meaningful about the system’s future dynamics, it
is nothing more than the chaotic behaviour itself.
There are, assuredly, a few problems with the application of the Doebeli and

Ispolatov results to natural populations that limit the scope of this trouble for
predictive fitness. It is certainly true that almost all natural populations undergo at
least some degree of density-dependent selection, and for almost all natural
populations the dimensionality of phenotype space can be expected to be quite
large. But Doebeli and Ispolatov’s model indicates only that population dynamics
will be ergodic in the long run – and this ‘long run’ is defined with respect to an
arbitrary time parameter appearing in their model, not any biologically relevant
unit like years or number of generations. It’s thus unclear just how much time is
required for chaotic behaviour to emerge, and hence how relevant these results are
to observations in natural populations.
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Recall, however, that Doebeli and Ispolatov’s results hold in the absence of
environmental changes. It seems plausible, therefore, that either (1) Doebeli
and Ispolatov’s results indicate that chaotic behaviour in natural populations is
a reasonable expectation, or (2) changes in the environment occur often enough
that it is unlikely that fitness predictions will be very useful anyway, as the rate
of environmental change will make inferences from the current environmental
state relatively meaningless. In either event, we have serious trouble for predictive
fitness.

5. Going Too Far?

One might well object that the argument thus far has proven too much: surely
it is not the case that mathematical fitness values are always predictively
irrelevant? By and large, I agree; there are a number of refinements that should
be added to the general case I have presented here. None of these adjustments,
however, can offer us broad support for predictions on the basis of mathematical
fitness.
First of all, biologists do indeed use various proxies for fitness – like the viability

or fecundity of organisms at particular ages – to explore the relationship between
changes in traits or changes in environments and population structure. They also
combine measures of fitness with other information to make inferences about the
impact of possible interventions in populations – what would happen if, say, young
organisms became twice as fecund? But these are all ceteris paribus predictions – if
we hold everything else equal, howmight we expect the population to respond to a
particular kind of intervention? We don’t have successful prediction here, so much
as a looser conception of fitness, plus information about the life histories of
organisms, working in tandem to support claims about possible trajectories for
evolving systems.
Further, if we limit ourselves to short-term comparisons within the same

environment, we can certainly argue that an organism or trait with a higher fitness
is likely to outcompete one with a lower fitness. But the importance of the results
discussed here is precisely in the trouble that they make for the transition from these
short-term steps, where we might be able to make those kinds of claims, to
longer-term knowledge of the evolutionary future. It is here that the complexity
and chaos of evolutionary change seems to cause real issues.
Finally, I should also note that I am by no means the first to make an argument

of this sort. To take just one example, Jonathan Birch has persuasively argued
against the usefulness of considering fitness – whether individual, inclusive or as
developed in Alan Grafen’s ‘formal Darwinism’ program32 – as a quantity that is
somehow ‘maximized’ by natural selection.33 Birch considers some seven different
putative maximization principles, and finds that none constitutes ‘a maximization
principle with biological meaning’.34 This result, too, stands in support of the
claims argued for here. Were it the case that there was a readily justifiable

Randomness, Chaos and Prediction

165



fitness-maximization principle, then we might be able to construct predictions on
that basis. In the absence of such a principle, however, yet another possible avenue
for predicting the trajectory of evolution is foreclosed.

6. Conclusion

As we have seen, then, predictions of evolutionary change based upon the fitness
values of traits turn out not to be very predictive after all. They are useful only when
we can accumulate enough data to make the predictions meaningful, and only
when chaotic population dynamics are absent. In some cases we may be reasonably
confident that both of these requirements are satisfied, such as in experimental
evolution. But in others, we simply will not know how to gauge the reliability of
fitness predictions. As we’ve seen, the application of Doebeli and Ispolatov’s model
needs to be explored empirically, as does the extent to which we will be able to
gather data on the fate of a given trait. The failure of such predictions, though, does
seem to be much more likely than we might otherwise have thought. A kind of
cautious agnosticism may be the order of the day.
These worries for predictive fitness also draw our attention to another long-

standing issue in the philosophy of biology: the relationship between short-term
and long-term evolutionary processes. Complete continuity is obviously not to be
expected. Various kinds of discontinuous phenomena, driving a wedge between
our causal descriptions of microevolution and the patterns of macroevolution, have
been noted at least since the proposal of Stephen Jay Gould and Niles Eldredge’s
punctuated equilibrium hypothesis.35 As JonWilkins and Peter Godfrey-Smith put
the issue, ‘many questions about the adaptive character of evolution depend
crucially on the grain at which evolutionary processes are being described’.36 Or, to
quote Jonathan Birch, ‘there is a logical gap between claims about short-term
changes in gene frequency and claims about longer-term phenotypic evolution’.37

We might hope to retreat, then, to claims about ‘medium-scale’ evolutionary
processes, as a place where our insights about microevolutionary causal structure
could plausibly be extrapolated. But it is precisely upon these medium-scale
inferences on the basis of fitness that the results here cast doubt. If we were hoping
for fitness to provide us with such predictions, those hopes may ultimately be
frustrated.
Where, then, to go from here? There are manifold ways in which evolution

might be said to be ‘random’, and, of these, some seem to seriously impact
our ability to make trustworthy predictions about the future trajectory of
evolution. Our tendency to think about evolutionary theory as a kind of
straightforward optimization process that pushes populations to the maximum
fitness value or the optimal organismic design runs the real risk of leading us astray.
The complexity and chaoticity of evolutionary change constitute at least one sense
of ‘randomness’ that may keep knowledge of the evolutionary future forever
beyond our reach.
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