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Abstract
Philosophers of biology have worked extensively on how we ought best to interpret 
the probabilities which arise throughout evolutionary theory. In spite of this substan‑
tial work, however, much of the debate has remained persistently intractable. I offer 
the example of Bayesian models of divergence time estimation (the determination of 
when two evolutionary lineages split) as a case study in how we might bring further 
resources from the biological literature to bear on these debates. These models offer 
us an example in which a number of different sources of uncertainty are combined to 
produce an estimate for a complex, unobservable quantity. These models have been 
carefully analyzed in recent biological work, which has determined the relationship 
between these sources of uncertainty (their relative importance and their disappear‑
ance in the limit of increasing data), both quantitatively and qualitatively. I suggest 
here that this case shows us the limitations of univocal analyses of probability in 
evolution, as well as the simple dichotomy between “subjective” and “objective” 
probabilities, and I conclude by gesturing toward ways in which we might introduce 
more sophisticated interpretive taxonomies of probability (modeled on some recent 
work in the philosophy of physics) as a path toward advancing debates on probabil‑
ity in the life sciences.

Keywords  Probability · Uncertainty · Evolutionary theory · Divergence time · 
Scientific modeling · Stochastic models · Bayesian models

Introduction

One of the oldest and most persistent debates in the philosophy of biology concerns 
the status of the probabilities that evolutionary theory seems constantly to employ. 
Are they objective or subjective? And whichever answer to that question we choose, 
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how are they grounded—on the basis of which facts in the biological world (or 
about human knowers) do they rest? The problem has been tackled in a variety of 
ways. First, we have the exploration of probabilities as they arise in various kinds 
of biological processes—to name only a few examples, there has been significant 
discussion of the “randomness” of mutation (Stamos 2001; Merlin 2010, 2016), of 
the influence (or lack thereof) of probabilistic causation in the processes of natu‑
ral selection and genetic drift (Matthen and Ariew 2002; Millstein 2006; Brandon 
and Ramsey 2007; Millstein 2016; Walsh et  al. 2017), the nature of “historicity” 
or path-dependence in biological systems (Beatty and Desjardins 2009; Desjardins 
2011, 2016), and the way in which factors external to an evolving system, such as 
the environment, should be considered (Brandon 1990; Abrams 2009; Lenormand 
et al. 2009).

Another literature has attempted to apply the extensive discussion of the inter‑
pretation of probability in general philosophy of science to evolution in particular 
(Millstein 2011; Drouet and Merlin 2013). Several articles have turned to recent 
work on “mechanistic” interpretations of probability (to use Marshall Abrams’s apt 
phrase) as a tool for understanding biological probabilities in a way which is neither 
classically subjective (i.e., not an ignorance interpretation deriving only from our 
lack of detailed understanding of biological systems) nor classically objective (in the 
sense, for example, of “brute” probabilities arising from quantum mechanics). This 
work has shown some real promise, for instance, when applied to the cases of fitness 
and genetic drift (Abrams 2012a, b; Strevens 2016), detailing analyses of micro-
causal structure that could produce the observed patterns of probabilistic causation 
that systems experiencing selection and drift exhibit. (We will return to these inter‑
pretations in the “Model uncertainties and biological probabilities” section below.)

One feature of this body of work, however, is troubling. While obtaining the cor‑
rect interpretation of these probabilities is doubtless an important enterprise, it is 
often a distinct challenge to find cases where the biological literature makes genu‑
ine contact with the question of interpretations of probability in evolution. In the 
absence of this interaction, philosophers are often “on our own” in pursuing ques‑
tions of chance and evolution. To take just one example, the debate over the inter‑
pretation of the probabilities at work in natural selection, genetic drift, and fitness—
often called the “causalist vs. statisticalist” debate—has tended to be cashed out 
with highly abstracted examples from roulette wheels (Strevens 2016) or coin tosses 
(Walsh 2007). Only occasionally has an author argued for a position’s superiority 
from biological examples (e.g., Ariew and Lewontin 2004; Millstein 2008), and the 
correct reading of these examples tends to be hotly disputed (Otsuka 2016).

We would be well served, then, by a search for case studies in which biologi‑
cal practice gives us a window into the source and status of evolutionary prob‑
abilities, and it is precisely my aim in this paper to explore such a case. When we 
examine the ways in which biologists estimate the divergence times of lineages (a 
major endeavor in the last decade of biological research), we see that we can, in fact, 
clearly distinguish the impact of probabilities which are the result of our ignorance 
of contemporary sequence data from those that are the result of our (ineliminable) 
ignorance about the deep evolutionary past. My hope here, then, is two-fold. First, 
this case shows us a way in which we can precisely analyze the source and status 
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of biological probabilities in a real-world example with empirical relevance. And 
second, I am cautiously optimistic that the general approach which I pursue here, 
which draws lessons for our understanding of biological probability directly from 
biological models, offers a way in which we might build a pluralistic and empirically 
informed method for understanding the role of probability in evolutionary biology.

I will begin by introducing the basic idea of divergence time estimation, describ‑
ing the history of increasing sophistication in these models. I then lay out the results 
concerning the sources of uncertainty in our data that can be derived from one set of 
these models.1 Next, I turn to the lessons on interpretation that we might draw from 
the probabilities attached to their results, and I conclude with some thoughts on the 
analysis of probabilities in biology more generally.

Building models of divergence time estimation

Imagine that we are interested in the evolutionary relationship between humans and 
our closest relatives. On the basis of speculation and some morphological data, we 
might well infer a basic tree structure like that found in Fig. 1. But this tree is sig‑
nificantly underspecified. In particular, we would like to obtain data that can con‑
firm the vertical distance between the nodes (ensuring that our branches are in fact 
correct, e.g., that chimpanzees really are more closely related to humans than are 
gorillas), and we would like to know the times at which those divergences took place 

4 3 2 1 0
age

 Humans

 Chimpanzees

 Gorillas

 Orangutans

 Macaques

Fig. 1   A basic phylogenetic tree for humans and their closest relatives, with arbitrary branch-lengths

1  I thank a reviewer for noting that the mere use of the term ‘uncertainty’ here, which I have imported 
from the biological literature in an effort to avoid confusion with these sources, carries a strong philo‑
sophical implication that these probabilities are merely subjective; I will argue against this interpretation 
in what follows.
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(e.g., whether humans diverged from chimpanzees much more recently than their 
common ancestor did from gorillas).

There are two primary sources of data to which we can appeal in this case. First, 
we have fossil specimens. The difficulty of dating phylogenetic trees using sporadic 
fossil data is not to be underestimated.2 The dating of the fossils themselves can be 
difficult, and the dates ascribed to multiple instances of fossils from the same clade 
need to be combined to offer a best estimate for the time of the clade’s appearance. 
Each fossil’s date, in turn, bears at least some error due to the inherently imperfect 
nature of the fossil record and dating methods, and there is an active debate over 
whether and how to take account of estimates of this error.

Importantly, such error arises from different sources on either side of a hypoth‑
esized branching event. For the minimum age of a clade, we have simply the inher‑
ent error in determining the age of a particular rock formation and the fossils which 
it contains. For the maximum age of a clade, on the other hand, we add to this 
first source of error the likelihood that the branching event was in fact earlier than 
the appearance of the earliest fossil at issue—as it is vanishingly improbable that 
any one particular fossil was the first representative of its clade. As Benton et  al. 
(2009,  p.  40) put it, this results in “relatively secure ‘hard’ minimum constraints 
on a particular branching point, and a soft maximum constraint.” This asymmetry 
makes epistemic sense. If we see a fossil at a given date, this can let us confidently 
assert a minimum date for the clade at issue (there is no way that the clade could 
have appeared after one of its members had lived!). But there simply is no fossil evi‑
dence which could speak to the maximum age of the clade. Our fossil evidence for 
the clade’s existence slowly becomes less common as we move backwards in time, 
and ultimately disappears. We are forced, then, to use probability densities for these 
maximum ages, estimated from models of fossil preservation, for instance.

What we are left with, in the end, are bounds which tend to be very imprecise. 
For example, our best current data indicates that the divergence of the Hominidae 
(the clade including orangutans, gorillas, chimpanzees, and humans, i.e., the diver‑
gence at the point labeled ‘3’ in Fig. 1) may be constrained by fossil evidence alone 
to somewhere between 33.7 and 11.2 million years ago (Benton et al. 2009, p. 48), 
and the human-chimpanzee divergence between 10 and 5.7 million years ago (Ben‑
ton et al. 2009, p. 46).

The second source of data that we use to calibrate these trees comes from 
the genetic sequences of the extant organisms from the tips of each of the tree’s 
branches. These sequences should allow us to determine how “far apart” these 
organisms are. In turn, because we can plausibly infer that the farther apart two 
organisms are, the more time it should have taken for evolution to produce the appar‑
ent divergence, these sequences should be able to inform our estimation of diver‑
gence times. In order to make this vague notion more precise, however, we need to 
make clear these vague notions of distance, and control for the obvious interfering 
effect of natural selection in driving evolutionary outcomes.

2  For a host of further details, as well as worked-out examples for a number of clades, the interested 
reader can consult Benton et al. (2009).
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Here enters the concept of the molecular clock. The fundamental idea, as origi‑
nally proposed by Zuckerkandl and Pauling (1965), rests on the observation that, if 
mutations in areas of the genome that are not under active selection accumulate at 
a roughly constant rate over time, the genetic distance between organisms at such 
loci should offer us a rough measure of the time since they diverged from their last 
common ancestor. Many of the models for the molecular clock which have been 
proposed have, in turn, relied on a significant number of assumptions, which I lack 
the space to explore in detail here—suffice it to say that it remains a topic of open 
debate whether we can in fact make sense of a “molecular clock” at all (for a review 
of the argument, see Schwartz and Maresca 2006).

While these general critiques will not be my focus, one of the problems inherent 
to any understanding of the molecular clock will be important for us going forward. 
Consider how we might represent divergence as a simple, dynamical equation in this 
context. We hypothesize that there has been a split between two lineages at some 
unknown time in the past, and each of these lineages, then, has continued on diverg‑
ing until the present, resulting in them becoming some distance apart from one 
another (the sense in which we should interpret this distance will be made more pre‑
cise in a moment). We can thus say that the distance of divergence = 2 × the diver‑
gence rate × the elapsed time since divergence.3 The issue, then, is this: divergence 
time only appears in any dynamical model like this when multiplied by the rate of 
change. We cannot ever observe it directly—only its effects in terms of distance 
between extant organisms, accumulated at some also-unknown rate of change.4 The 
rate and the time, then, are what is known as nonidentifiable—it is impossible to 
obtain precise values for rate and time, even in the presence of an infinite number of 
observations of distances.

How, then, are these distances and rates to be defined and understood? The dis‑
tance, here, is taken to be the true number of substitutions that brought us from the 
original point of divergence to one or the other of the extant organisms that we are 
now able to sequence. The rate, in turn, is the speed at which these substitutions 
took place over evolutionary time. How quickly, that is, will portions of the genetic 
sequence of an organism tend to change in the absence of any particular selective 
pressure?

The challenge here lies in accurately estimating the rate of divergence. The first 
element of a model for the rate is a substitution model—a model for the manner in 
which genetic substitutions will accumulate in a particular sequence, in the absence 
of selection. There is a massive diversity in these models, dating back a number 
of decades—far more than I could enumerate in a brief discussion here (see, e.g., 
Felsenstein 2004, chapter 13). The simplest such model, which dates to Jukes and 
Cantor (1969), assumes that all base pairs within a sequence hold an equal prob‑
ability of substitution to any other base pair, at any time. There are a variety of ways 

3  The constant factor of two, here, indicates that both lineages have continued to diverge since the origi‑
nal branching event.
4  And, as already discussed, its traces in the fossil record, though we are not considering those at the 
moment. We will return to the question of combining fossil and molecular data shortly.
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to make this model more complex. To take just two examples, we might permit the 
rate of substitution to vary according to the type of substitution, accounting for the 
biochemical fact that transitions (when a locus moves from A to G or from C to T) 
occur significantly more often than transversions (all other types of substitution; see 
Hasegawa et  al. 1985). At the cost of even more complexity, we might allow the 
parameters of the substitution model to vary based on the particular locus consid‑
ered (Halpern and Bruno 1998; Yang and Rannala 2006).

A complete model for the rate, however, can be even more complex than a 
simple single substitution model, because it may be the case that the substitution 
model itself varies across time and across the tree of life. A number of models have 
attempted to work with a “relaxed clock” (Drummond et  al. 2006; Lepage et  al. 
2007), on which the clock rate is permitted to vary with time or by clade. Data from 
a variety of lineages suggests that the rate of the molecular clock is itself a parameter 
which is under the control of evolution (Gillespie 1984, 1991), and lineage-specific 
molecular clock rates have been modeled in a variety of different ways (Rannala 
and Yang 2007). The possibility that these rates are correlated between neighboring 
clades has also been evaluated, without a clear result (for two opposing perspectives, 
see Lepage et al. 2007; Linder et al. 2011).

As already noted, however, because rates and times are confounded in expres‑
sions for distance, we will require probabilistic models for estimating the true value 
of the divergence time. In the last two decades, work has centered on Bayesian mod‑
els for divergence time estimation (Nascimento et  al. 2017). Our best resource to 
minimize the impact of confounding involves, then, the combination of all three 
of the major resources we have discussed so far—fossil data, current genetic dis‑
tances, and models of the molecular clock—to produce an overall model for estimat‑
ing divergence times. In particular, if we use a Bayesian model for the inference of 
divergence times, we need to be able to set our prior probabilities on the various 
possible values for divergence time. It is here that the fossil data can enter, provid‑
ing values for our priors which should permit the inference of divergence times with 
significantly higher quality.

Methods for setting these priors have seen impressive improvement in recent 
years. Early models simply took the fossil dates to provide priors with zero uncer‑
tainty—the oldest extant fossil known just is our best prior for the age of the given 
node (Thorne and Kishino 2002). As discussed above with regard to fossil calibra‑
tion, however, this significantly misrepresents the quality and nature of the fossil 
evidence, conflating the “hard” estimate of a minimum age with a singular estimate 
of clade appearance. From a technical perspective, as well, the absence of uncertain‑
ties in these priors significantly affects the quality of the divergence times estimated. 
A next generation of models, then, took the fossil record to provide hard bounds 
on node ages—either only a hard minimum bound on the age of a node (Sander‑
son 1997), or both minimum and maximum bounds on the age of a node (Thorne 
et al. 1998)—outside of which we set the probability of finding the true divergence 
to zero.

More sophisticated models, in turn, have investigated using “soft bounds” (priors 
with non-zero probabilities outside the fossil calibration range) as a way to better 
account for fossil uncertainty, both with a per-locus-varying molecular clock (Yang 
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and Rannala 2006) and a per-lineage varying molecular clock (Rannala and Yang 
2007). In particular, these priors allow us to account for the fact, also discussed 
above, that maximum ages for a clade have at least some chance to be larger (or far 
larger) than any of the fossils which we have currently discovered. (The result of 
applying the per-locus-varying model of the rate from Yang and Rannala (2006), 
along with fossil priors from Benton et al. (2009), to the primate phylogenetic tree in 
Fig. 1 is provided in Fig. 2.)

Recent work has endeavored to integrate even more information into these esti‑
mates, as there is no in-principle reason not to move beyond the twin sources of 
fossil and sequence data. Wilkinson et  al. (2011), for example, use extant data 
about clade diversity to add information to our model about the likely process of 
fossil deposition and recovery within each lineage. Ronquist et  al. (2012), most 
ambitiously, construct what they call a “total-evidence” model, integrating genetic 
sequences, coded morphological data, and fossil evidence to produce divergence-
time estimates.

Understanding uncertainty

As can be readily seen from the brief history presented above, one of the main driv‑
ers of increasing complexity in models of divergence time estimation has been a 
persistent desire to understand the uncertainty in fossil calibrations, clock rates, 
and resultant divergence times. In a scathing critique entitled “Reading the Entrails 
of Chickens,” Graur and Martin “conclude that all divergence estimates discussed 
here are without merit” (2004, p. 85), offering a list of thirteen references, each of 
which fails to establish its conclusions, they argue, “mainly through the conversion 

30 25 20 15 10 5 0

age (My)

 Humans

 Chimpanzees

 Gorillas

 Orangutans

 Macaques

Fig. 2   A phylogenetic tree for humans and their closest relatives, with accurate branch-lengths. 
The values of and 95% confidence intervals for each node, from most recent to oldest, are: 
8.06 > t

1
= 7.05 > 5.79 ; 10.2 > t

2
= 8.89 > 7.31 ; 19.7 > t

3
= 17.2 > 14.1 ; 34.7 > t

4
= 30.3 > 24.9 . 

Data from dos Reis and Yang (2013, p. 38, Table 5)
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of statistical estimates (which by definition possess standard errors, ranges and con‑
fidence intervals) into errorless numbers” (p. 80). Their paper concludes by advising 
the reader: “whenever you see a time estimate in the evolutionary literature, demand 
uncertainty!” (Graur and Martin 2004, p. 85).

At the very least, there is clearly an opening here for philosophical analysis. 
We have, as we often do, a process of biological inference which results in esti‑
mates for a quantity with significant errors attached. Further, we have a wide vari‑
ety of sources of uncertainty that drive this need for probabilistic modeling, each 
of which have been approached by biologists in a variety of different ways, across 
an active and highly theoretically self-reflective literature. Let’s now turn to some 
results due to Yang, Rannala, and dos Reis, which allow us to not just qualitatively 
investigate some of these sources of uncertainty, but quantify them, along with their 
interrelationships.

If we want to more carefully analyze the probabilities at issue here, one fruitful 
first question to ask would be the following: how much of the uncertainty in our 
resultant estimations of divergence times is the result of our ignorance of contem‑
porary sequence data, and how much is the result of the fossil calibrations? The 
first paper to extensively consider this question was Yang and Rannala (2006), who 
derived that, even in the presence of infinite sequence data, the uncertainty in diver‑
gence times does not fall to zero, as any error in fossil calibration remains impos‑
sible to eradicate. While this paper uses a molecular clock that varies only per-locus, 
they followed up a year later with a per-lineage-varying clock (Rannala and Yang 
2007), and obtained roughly the same infinite-sites results.

More detail was then offered by dos Reis and Yang (2013), who were the first to 
investigate the approach to the infinite-sites limit. How, that is, would our estimates 
for divergence times change as we move from a small quantity of sequence data 
toward an infinite amount? They explored this both in the context of a single, correct 
fossil calibration (with uncertainty), and given multiple, possibly mutually incon‑
sistent fossil calibrations.5 The convergence, as it turns out, occurs quite quickly—
the n = 100 plot is very near the infinite-sites limit, and the n = 1000 plot is indis‑
tinguishable from the infinite-sites plot. The plot converges not to a single point, but 
rather a somewhat more precise ridge. Their results may be seen in Fig. 3, which 
shows the approach to the case of infinite sites for n = 10 , 100, and 1000.

The precise derivation of these graphs is not important for our purposes. Rather, 
let’s consider what we might learn from the fact that this sort of analysis is possible 
here. The fact that the uncertainty in these models is ineliminable is, on the one 
hand, an unsurprising consequence of the nonidentifiability of rates and times. But 
to stop the analysis at this point significantly underplays the interesting nature of 
these results. Several points are worth examining in some detail.

First, because we have both the infinite-sites model and the approximations 
to it via finite data, we are, in essence, able to partition the uncertainty which 
appears in these divergence time estimates. The approach to the infinite-sites 

5  Their model uses a per-locus-varying molecular clock, though, as they note, a relaxed-clock model is 
only likely to add further uncertainty.
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model is carried out by adding further contemporary sequence data. Whatever 
uncertainty is eliminated in the infinite-sites model, therefore, is straightfor‑
wardly a result of our ignorance of further sequence information. The remaining 
uncertainty, on the other hand (i.e., the failure of the n = ∞ curves in Fig. 3 to 
collapse to single values), is a direct result of the historical inaccessibility of the 
evolutionary past and the intrinsic difficulties in accurately identifying and dating 
fossils, along with the effect of nonidentifiability.

As was discussed briefly above (see also Yang and Rannala 2006, p. 214), the 
process of accurately dating a fossil comes with a number of potential hazards. 
Simple experimental error may cause problems in radiometric dating or an incor‑
rect geological assignment. More importantly, the relationship between a particu‑
lar fossil and the clade under investigation may be difficult to discern. A fossil 
might lie on an extinct side branch, rather than being ancestral to the clade at 
issue, or it may be hard to determine whether a fossil in fact precedes a diver‑
gence. Lastly, it is likely that even if we were in possession of a complete and 
accurate catalog of the available fossil evidence, we would still face uncertainty 
arising from the epistemic inaccessibility of the deep evolutionary past.

We thus have, at the very least, the following sources of uncertainty at work 
in divergence time estimations: the lack of further contemporary sequence data, 
the various factors that lead to uncertainty in fossil priors, and the mathematical 
fact of nonidentifiability itself. While I want to reserve further discussion of this 
point for the next section (in the context of the interpretation of the probabilities 
that arise in this context), it is worth noting briefly now that these various sources 
of uncertainty are clearly not identical, and we thus have the opportunity to inter‑
pret each of them in different ways. In particular, the uncertainty arising from the 

Fig. 3   Graph of the prior probability and the posterior probability distributions for both time t and rate r, 
given an increasing number n of sites. Lines for n = 1000 and n = ∞ are almost identical. For the details 
of derivation, which are not important to the point here, see dos Reis and Yang (2013, Fig. 4); appears 
courtesy John Wiley and Sons
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fossil record is, I will argue, more than simply a source of subjective probabilities 
best described by a traditional ignorance interpretation.

Second, because the finite-data approach can give us an idea of how quickly the 
system approaches the infinite-data limit, this allows us, in effect, to determine the 
relative importance of each of these two types of uncertainty. The fact that add‑
ing further sequence data very rapidly converges upon the infinite-data limit indi‑
cates that any contemporary sequence uncertainty is, in general, dominated by the 
uncertainty in the fossil data. The extent to which this is true, in fact, has been sur‑
prising to practitioners. Mulcahy et  al. , for example, noted that there was only a 
minor difference between a divergence time estimate with 2 and 25 sites, which they 
referred to as “a somewhat disturbing result that should be investigated further” 
(2012, p. 989). There is an expectation among biologists, it seems, that the overall 
uncertainty would be more sensitive to the addition of contemporary sequence data 
than it in fact is.

Finally, it is worthy of note that—while the calculation for real cases of diver‑
gence times is exceptionally difficult—we can quantify precisely this partitioning 
by determining how much of the variance in the posterior distribution of divergence 
times arises from the lack of sequence data and how much arises from the fossil 
priors. Dos Reis and Yang estimate this value using a generalized Bayesian heuristic 
and predict that the proportion u

F
 of variance due to fossil calibration will equal the 

ratio of the squares of the confidence interval widths w for the infinite- and finite-
sites models, u

F
= w

2

∞
∕w2 , and the proportion of variance due to sequence data will 

thus be u
S
= 1 − w

2

∞
∕w2 . While the details are not of vital importance here, the fact 

that the source of these probabilities can be not only conceptually and qualitatively 
but also quantitatively assessed is an exciting possibility for philosophical analysis.

Model uncertainties and biological probabilities

So much for the formal results concerning the sources of uncertainty in divergence-
time models. It’s now time to turn to the upshot of this debate for the philosophi‑
cal analysis of the probabilities that occur in our resulting estimations of divergence 
times. Here, I think the lessons that divergence time estimation teaches us have an 
impact beyond our understanding of the particular model of dos Reis and Yang.

I should begin with an effort to clarify my terms, as the debate over the inter‑
pretation of probability (despite its age) has yet to settle on a common terminol‑
ogy. A view commonly found in the literature separates probabilities into exactly 
two categories, which I have been referring to as ‘subjective’ and ‘objective’ thus 
far. Subjective probabilities, then, are intended to quantify our uncertainty about a 
concrete fact in the world. Because they are linked to our uncertainty, they respond 
to the addition of further data about the phenomenon concerned. Objective prob‑
abilities, on the other hand, quantify probabilistic facts that are genuinely parts of 
the structure of the world. No amount of further data one might provide could, then, 
reduce their influence. On this common (perhaps cartoon) view, these two catego‑
ries exhaust the space of probabilities. My goal in this section, then, is to argue for 
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the claim that the case study of divergence time estimation can be added to the list 
of those which make trouble for this classic classification of probability.

As a starting point for making my case, consider a fairly common argument for 
the claim that the probabilities we find in evolutionary biology are, and must be, sub‑
jective. A number of authors, but perhaps most especially Alex Rosenberg (Rosen‑
berg 1994; Graves et  al. 1999), have argued that all of the probabilities deployed 
by evolution are subjective, because “agents with our cognitive limitations and our 
interests can only use the theory for explanations and predictions by imposing [sub‑
jective] probabilities on them” (Graves et al. 1999, p. 141). The biological world, the 
argument goes, is inescapably messy. Biological explanations must abstract away 
from this detail, “imposing” probabilities on various quantities in order to cover our 
ignorance of the fine details of the biological data (Matthen 2009). As a result, we 
should by no means be surprised that probabilities feature in biological explana‑
tions. If they did not, there simply would be no biological explanations.

Without a doubt, some probabilities in biology are amenable to this sort of anal‑
ysis. Consider, for example, large-scale modeling work in ecology, which aims to 
integrate data from a wide variety of sources to make generalized conclusions about 
real-world populations. Such models inevitably rely on precisely the sort of simpli‑
fication-over-messiness that this argument invokes (Weisberg 2014). The kinds of 
causal interactions present in any real-world ecological system are quite probably 
permanently beyond our power to comprehend in anything like full detail. We have 
no choice, then, but to generalize away from them, summarizing them via a variety 
of probabilistic influences (likely rates of predation, expected carrying capacities, 
and so forth).

But should we accept the conclusion, as some have urged, that this is therefore 
the correct interpretation of all the probabilities in evolutionary theory? Divergence 
time estimation provides an impressive example of a case where finer-grained anal‑
ysis offers fruitful results, results that would be missed by a univocal analysis of 
biological probability. As we saw above, precisely the advantage of this case is that 
we can readily analyze a variety of sources of uncertainty in the biological world 
which each have an effect on our final divergence time estimates. This analysis lets 
us extract (at least) two interesting morals.

First, whatever the merits in particular cases of an argument concerning abstrac‑
tion in the face of biological messiness, appealing to any such argument in this case 
(and, by extension, as a general panacea for all biological probabilities) seems to 
be a mistake. We’ve seen here a vast amount of research on the various sources of 
uncertainty which have been elucidated by the biologists working in these cases, 
the tracking of those sources’ respective impact on final estimates, and the relation‑
ship between the fossil-prior uncertainty and the addition of further contemporary 
sequence data as we move toward the infinite-sites limit. A view that looked solely 
toward abstraction would declare all of this work to be only of secondary impor‑
tance, perhaps useful for a reconstruction of biological practice but not informative 
with regard to the status or nature of the probabilities themselves. I hope to have 
shown here that at least for this case, such a move both forecloses on much interest‑
ing reasoning to be done concerning the probabilities themselves, and does not align 
with the practice of the biologists concerned.
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One might push the moral even more broadly. A general analysis of the notion 
of probability across evolutionary biology is doubtless a desirable philosophical 
result. But it seems as though it would be difficult to offer a single interpretation of 
probability that could encompass probabilities arising from sources as diverse as (1) 
ignorance of further contemporary sequence data, (2) the mathematical constraint of 
nonidentifiability, and (3) facts about the destructive nature of the process of fossili‑
zation in the evolutionary long term. The sophistication of biological modeling work 
here, and the corresponding breadth of philosophical interpretation available, seems 
to resist the imposition of a single interpretation of probability—and I suspect that 
this point will generalize to further areas of biological theory.

The second moral, then, brings us back to the main argument of the section. We 
can, I claim, also use this example to make trouble for the dichotomy between sub‑
jective and objective probability in the first place. As we saw above, these models of 
divergence time estimation have uncertainty which arises from at least three sources. 
The first is the lack of further data about contemporary sequences of extant organ‑
isms. This, it seems, is a very clear instance of subjective probability—sequence 
data serves as a source of uncertainty in our divergence time estimates only because 
we have failed to collect further sequence data.

The latter two sources of uncertainty, on the other hand, are more difficult to ana‑
lyze. First, we have the uncertainty which arises from the (presumably fundamen‑
tally mathematical) fact that the model is nonidentifiable. This appears to arise sim‑
ply as a matter of the mathematical formalism which must be used to express models 
of divergence time, and we will return to it below. While I lack the space to fully 
pursue the parallel here, it may perhaps, in turn, be comparable to recent discus‑
sions of purely mathematical explanation in both evolutionary and non-evolutionary 
sciences (Sober 2011; Baker 2017). Second, we have the uncertainty which arises 
from the fossil priors, which in more complex models are expressed as probabilistic 
ranges rather than single points. Portions of this uncertainty, as described above, are 
certainly due to our ignorance. We will never have a complete catalog of all of the 
available fossil data relevant to a particular divergence, for instance—and the same 
holds for cases of experimental error.

But several of the other sources of uncertainty here seem different. There’s noth‑
ing about us as subjective knowers that affects the process of fossilization itself, and 
factors of this very process give rise to several of the sources of uncertainty at issue 
here. As Derek Turner has influentially argued, not only do we deal with the conse‑
quences of the products of fossilization being destroyed over time, “our background 
theories [about the way fossilization works, e.g.] give us reason to believe that they 
have been destroyed” (Turner 2005, p. 216). That is, the objective way in which the 
various processes of fossil deposition (e.g., the fairly unusual conditions required 
for the successful production of a fossil), geologic change (e.g., the destruction of 
fossils by subduction at plate boundaries), etc. actually operate entail that the incom‑
pleteness of the fossil record and the destruction of fossils are objective features of 
the natural world.

When uncertainty in our divergence time estimates can be directly traced to these 
kinds of sources, we have an instance where, I claim, we are not quantifying the 
uncertainty of a particular knower in a particular context (or that of any particular 
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epistemic community). They are thus not, on the cartoon view, obviously subjective 
probabilities. At the same time, it is not clear that they are, in a traditional sense, 
objective probabilities—which are most commonly associated with theories like 
quantum mechanics in which probabilistic structure is an irreducible feature of the 
world.

It might be objected here that I have misinterpreted the notion of subjective prob‑
ability.6 Surely, the objection goes, these probabilities are and could only be subjec‑
tive. There is a concrete fact—the time at which a fossil was laid down—and we 
desire to know it. We could have known it, had we been present when the fossil was 
deposited, but we were not, and hence insofar as we need to reason about these mat‑
ters probabilistically, we are doing so in the context of our ignorance of this fact. 
Quantifying ignorance, thus subjective probability.

I disagree. Probabilities are not free-floating features of the world (except per‑
haps in a metaphysically sensitive analysis of objective probabilities as they might 
arise in a domain like quantum mechanics). They arise, rather, within a particular 
theoretical context. We could, of course, have been present at the time of deposition 
of a fossil. Alternative humans with time-travel at their disposal would construct a 
very different theory of paleobiology, and the probabilities which appeared within 
it would need to be interpreted in a dramatically different manner. But as it sits, 
the probabilities that appear in divergence time estimates need to be interpreted as 
arising (at the very least) partly from features of the external world (like the pro‑
cesses of fossilization and the destructive forces that impinge on fossils), partly from 
our epistemic limitations (e.g., lack of time travel, which is not obviously a variety 
of “ignorance”), and partly from features of our theories about that external world. 
This last category might include features that pertain directly to our uncertainty 
concerning the data (e.g., lack of further sequence information), or features that are 
more difficult to categorize (e.g., mathematical limitations that could, plausibly, be 
taken to apply to any theory that could be constructed in the domain at issue). In any 
event, if we wish to analyze probabilities within biology, we ought, as I hope to have 
done here, perform that analysis by evaluating, as directly as we can, the manner in 
which those theories do and must invoke those probabilities.

The correct analysis in our case, at least of the more complex sources of probabil‑
ity at work here, thus seems to land in a third category, between the classical notions 
of objective and subjective probability. There is, it seems, no reason to think that the 
processes of fossilization could not be represented in a deterministic way, or derived 
from a hypothesized deterministic fundamental physics—no quantum effects control 
whether or not a particular organism will become fossilized and preserved until the 
present day—but at the same time, it seems as though these probabilities simply are 
(and we have reason to believe would remain) features of our best theories of the 
relevant processes occurring in the world.

Comparison to probabilistic reasoning in other domains may be helpful to elu‑
cidate the sense of probability that I am claiming applies in this case. Consider 
the discussion of roulette wheels in Abrams (2012b). Even in a world where the 

6  A reviewer has urged the point.
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underlying microphysics are entirely deterministic, there remains a sense in which 
the fact that there is a 50-percent chance that a spin of the roulette wheel turns up 
red is a true, objective fact about the world. There are a variety of ways in which 
to cash this out—Abrams’s own involves describing features of the causal map‑
ping between “input” microstates and “output” states of the wheel as a whole, 
and Strevens (2011) offers a different but similarly inspired reconstruction. The 
overall intuition, however, remains constant: these probabilities are genuine fea‑
tures of the world even though they are in fact instances of underlying determinis‑
tic causal pathways.

Notably, this is far from the only place in which this class of probability has been 
noted in the life sciences. Millstein (2003) considers the interplay across evolution‑
ary theory between what she terms “deterministic” and “indeterministic” notions of 
probability (both being “objective,” at least in the sense of existing independently 
of human knowers), and similar moves are made by Abrams (2012a) and Strevens 
(2016) in the cases of fitness and genetic drift, respectively.

But in many cases, we are still are not given by these authors the kinds of tools 
needed to analyze the uncertainty in the fossil case. For example, Millstein concludes 
that the primary interpretation of probabilities in evolution is likely to be population-
level propensities (2003,  pp.  1326–1327), and Abrams and Strevens both push for 
their particular formulations of mechanistic probability, which produce objective, 
reliable probabilities in certain kinds of highly structured deterministic causal sys‑
tems (Abrams 2012b). Both these general accounts seem inapplicable to our case 
here—Millstein’s applies only to evolving populations, and the work of Abrams and 
Strevens requires analysis of certain kinds of recurring features in the causal struc‑
tures of the probabilistic system that seems to be impossible given the complex inter‑
play involved in the process of fossilization. This is, of course, no indictment against 
any of the work accomplished by these authors—rather, their focus lies elsewhere, 
often on the probabilities that arise in fitness, natural selection, and genetic drift.

An example of the sort of more detailed meta-level framework that I claim would 
yield more fruitful analyses in the case of divergence time estimation models may 
be found in an entirely different area of the philosophy of science. In discussing the 
question of observational equivalence between deterministic and stochastic models 
in the philosophy of physics, Werndl (2013) has noted that we must be cautious in 
specifying the kinds of observations that we take to be relevant to a decision about 
a stochastic model. Translating her examples into our context, when we discuss the 
sources of uncertainty which cause that model to be probabilistic, we might be con‑
sidering (1) uncertainty which arises with respect to the actually observed data, (2) 
uncertainty with respect to “currently possible observations, i.e., currently possi‑
ble observations given the available technology,” (3) with respect to “observations 
which are possible in principle where there are limits, in principle, on observational 
accuracy,” or (4) with respect to “observations which are possible in principle 
where there are no limits, in principle, on observational accuracy. (Here, although 
observation can never be made with infinite precision, observations which are pos‑
sible in principle allow the researcher to come arbitrarily close to these infinitely 
precise values)” (Werndl 2013, p. 2253). As she notes, for researchers in practice, 
the type of uncertainty relevant for model-selection choice is (1), but if our goal is 
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to analyze the uncertainty within these models, such uncertainty might well fall into 
any one of these four classes—while the standard “subjective/objective” distinction 
usually considers only one of these levels.7

Even Werndl’s analysis, though, doesn’t seem to quite fit the distinction between 
sequence data and fossil data being drawn in the divergence time case. Werndl is 
right to draw our attention to the limits on observations which give rise to the sto‑
chasticity present in our models, but it’s not clear that limits on accuracy are the ones 
relevant here.8 Her analysis does seem to draw our focus to the right features of the 
biological model: the differing ways in which uncertainty is generated by sequence 
data (resource limitations, experimental error, etc.) and fossil data (resources limita‑
tions as well, but also facts about the fossilization process, not least among them 
the epistemic inaccessibility of evolutionary deep time), and how that uncertainty is 
combined in the derivation of divergence times.

In that light, then, we could read these sources of uncertainty in at least three 
different ways, each with their own attendant in-practice and in-principle limita‑
tions, and each deserving of a separate variety of analysis. The lack of contempo‑
rary sequence data arises thanks to experimental error and contemporary resource 
limitations, but is a circumstance in which complete data (or, at least, given the 
speed of the approach to the infinite-sites limit, what amounts to complete data) is 
available—something like case (4) in Werndl’s taxonomy. Fossil uncertainty cer‑
tainly arises, in part, from the same sources. But the fact that objective features of 
the process of fossilization play a role here seems to move us toward Werndl’s class 
(3), where while some further observations are possible, there are in-principle lim‑
its, here deriving from features of the processes of fossilization. Finally, we have 
the peculiar case of the nonidentifiability of rate and time, which, as noted above, 
only appear multiplied together in models for divergence time. What makes this an 
interesting aspect of divergence-time models is that, while it does not introduce any 
“real-world” uncertainty into divergence time estimates (i.e., it is not as though the 
fact that rate and time only appear multiplexed that prevents us from gathering more 
empirical data), it nevertheless remains responsible for setting an absolute limit on 
our ability to accurately estimate divergence times. This seems to give rise to a sort 
of probability that does not cleanly fit into Werndl’s taxonomy, necessitating the 
addition of (5⋆ ) uncertainty which enters into our measurements of a quantity as a 
feature of the models for estimating that quantity, but is not eliminable in principle.9

7  Which one will often depend on the kind of analysis and the theory being considered. For instance, 
analyses of quantum mechanics tend to focus on (4), as QM offers us strict limits on what can be 
observed in principle (Earman 2007). In evolutionary biology, the focus of philosophers of biology on 
practical considerations tends to shift the analysis to (2), though some work (such as that on the empiri‑
cal methods of measuring natural selection found in Endler 1986) focuses on instances of (1).
8  To be clear, this is not a criticism of Werndl, for whom measure-theoretic models of particle location 
are the central example, and hence limits on accuracy are precisely the relevant focus of her work.
9  Symmetry would argue for the introduction of (6⋆ ) uncertainty which enters into our measurements of 
a quantity as a feature of the models for estimating that quantity, which would be eliminable in principle 
(i.e., would disappear given the use of more sophisticated models). No (6⋆)-type uncertainty seems to me 
to be present in the case study here, as it seems impossible to construct an identifiable model for diver‑
gence time.
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While it is difficult to pursue the precise details of a taxonomy such as this on 
the basis of a single case study, the broader point remains, I hope, clear: examples 
such as these are well served by a significantly more detailed analysis of how such 
probabilities arise within particular, real-world biological models, transcending the 
basic subjective/objective distinction. Even better if, as in this case, these uncertain‑
ties have empirical upshot and can be explored quantitatively. I want to conclude by 
considering how these broader lessons might be applied in examples beyond the one 
I have described here.

A way forward

As I noted in the introduction, discussions of probability in evolutionary theory have 
frequently focused on extremely generalized cases—such as the broad interpreta‑
tion of probabilities as they occur throughout fitness, natural selection, and genetic 
drift—and, as a result, required equally general philosophical analysis. I should 
make it clear that such analysis is important, and I have written on these topics 
myself (Pence and Ramsey 2013; Pence 2017). But the persistent intractability of 
these debates should give us pause, and cause to reevaluate our approach. The cau‑
salist-statisticalist debate, for instance, has continued for fifteen years (Matthen and 
Ariew 2002; Walsh et al. 2002), and shows no signs of abating (Otsuka 2016; Walsh 
et al. 2017).

I would suggest that one way, at least, to move forward on these debates is exem‑
plified here. Many biological models are probabilistic, and for many, this is due to 
the need to quantitatively track uncertainties arising from the vicissitudes of data 
collection. This means that there is a (broadly untapped) collection of empirical 
work which is directly relevant to our understanding of the interpretation of these 
probabilities. Such an approach has several benefits. The presence of active mod‑
eling work often means, as in the example here, that we can manipulate model 
parameters with the goal of seeing the interaction between various sources of model 
uncertainty. The topic also garners significant interest from practicing biologists, 
making active dialogue with scientists more likely and more fruitful.10

As I have argued here, one impact of such an expansion of scope in our analysis 
of probabilities in evolution is likely to be the progressive realization that our ana‑
lytical frameworks for understanding probability (often bequeathed to us via discus‑
sions of determinism and indeterminism in classical and quantum physics over the 
first part of the twentieth century) are inadequate to the task of clearly describing the 
work of biologists in these arenas. Philosophers of biology, given the robust use of 
probability in the variety of stochastic modeling contexts that biology provides us, 

10  And not just biologists, either—see, for example, the robust literature on the tracking and management 
of uncertainty in climate science (e.g., Foley 2010).
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may be uniquely positioned to advance research on the interpretation of probability 
in this way.11

And while I do not claim to have definitively argued for the superiority of a tax‑
onomy like Werndl’s (as expanded) from only one example, such a taxonomy does 
have a number of very significant advantages for the analysis of biological models. 
Focusing our work on the sources of uncertainty and the ways in which these trans‑
late into stochastic or probabilistic models has both allowed for maximal engage‑
ment with the work of biologists, as well as drawn our attention not to the abstract 
causal structure of the model, but rather to the precise relationship between the vari‑
ous pieces of data utilized by the model and the conclusions drawn from them—the 
relationship between statistical theory and world. It is my hope that redirecting our 
work in this way could offer us true progress on our understanding of probabilities 
in evolutionary biology.

Acknowledgements  My sincere thanks to two anonymous reviewers for this journal, who very dramati‑
cally improved this paper (and caught a few serious errors!). For comments on a very early version of 
this project, thanks to an audience at the Models and Simulations 6 conference, at the University of Notre 
Dame. Many thanks also to Mario dos Reis for the initial inspiration behind the project, which was born 
at NESCent—still inspiring interdisciplinary work years after its unfortunate closure.

References

Abrams M (2009) What determines biological fitness? The problem of the reference environment. Syn‑
these 166(1):21–40

Abrams M (2012a) Measured, modeled, and causal conceptions of fitness. Front Genet 3:196
Abrams M (2012b) Mechanistic probability. Synthese 187(2):343–375
Abrams M (2015) Probability and manipulation: evolution and simulation in applied population genetics. 

Erkenntnis 80(S3):519–549
Ariew A, Lewontin RC (2004) The confusions of fitness. Br J Philos Sci 55(2):347–363
Baker A (2017) Mathematical spandrels. Australas J Philos 95(4):779–793
Beatty JH, Desjardins EC (2009) Natural selection and history. Biol Philos 24(2):231–246
Benton MJ, Donoghue PCJ, Asher RJ (2009) Calibrating and constraining molecular clocks. In: Hedges 

SB, Kumar S (eds) The timetree of life. Oxford University Press, Oxford, pp 35–86
Brandon RN (1990) Adaptation and environment. Princeton University Press, Princeton
Brandon RN, Ramsey G (2007) What’s wrong with the emergentist statistical interpretation of natural 

selection and random drift? In: Hull DL, Ruse M (eds) The Cambridge companion to the philosophy 
of biology. Cambridge University Press, Cambridge, pp 66–84

Desjardins E (2011) Reflections on path dependence and irreversibility: Lessons from evolutionary biol‑
ogy. Philosophy of Science 78(5):724–738

Desjardins E (2016) Contingent evolution: not by chance alone. In: Ramsey G, Pence CH (eds) Chance in 
evolution. University of Chicago Press, Chicago, pp 223–243

dos Reis M, Yang Z (2013) The unbearable uncertainty of Bayesian divergence time estimation. J Syst 
Evol 51(1):30–43

Drouet I, Merlin F (2013) The propensity interpretation of fitness and the propensity interpretation of 
probability. Erkenntnis 80(S3):457–468

Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confi‑
dence. PLoS Biol 4(5):e88

11  The already much-mentioned work of authors like Strevens and Abrams on the role of mechanistic 
probability provides one excellent example of this (Strevens 2011, 2013, 2016; Abrams 2012a, b, 2015).



	 C. H. Pence 

1 3

   21   Page 18 of 19

Earman J (2007) Aspects of determinism in modern physics. In: Butterfield J, Earman J (eds) Handbook 
of the philosophy of science: philosophy of physics. North-Holland, Amsterdam, pp 1369–1434

Endler JA (1986) Natural selection in the wild. Princeton University Press, Princeton
Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, Sunderland
Foley A (2010) Uncertainty in regional climate modelling: a review. Prog Phys Geogr 34(5):647–670
Gillespie JH (1984) Molecular evolution over the mutational landscape. Evolution 38(5):1116–1129
Gillespie JH (1991) The causes of molecular evolution. Oxford University Press, Oxford
Graur D, Martin W (2004) Reading the entrails of chickens: molecular timescales of evolution and the 

illusion of precision. Trends Genet 20(2):80–86
Graves L, Horan BL, Rosenberg A (1999) Is indeterminism the source of the statistical character of evo‑

lutionary theory? Philos Sci 66(1):140–157
Halpern AL, Bruno WJ (1998) Evolutionary distances for protein-coding sequences: modeling site- spe‑

cific residue frequencies. Mol Biol Evol 15(7):910–917
Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mito‑

chondrial DNA. J Mol Evol 22(2):160–174
Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein 

metabolism, vol 3. Academic Press, New York, pp 21–132
Lenormand T, Roze D, Rousset F (2009) Stochasticity in evolution. Trends Ecol Evol 24(3):157–165
Lepage T, Bryant D, Philippe H, Lartillot N (2007) A general comparison of relaxed molecular clock 

models. Mol Biol Evol 24(12):2669–2680
Linder M, Britton T, Sennblad B (2011) Evaluation of Bayesian models of substitution rate evolution—

parental guidance versus mutual independence. Syst Biol 60(3):329–342
Matthen M (2009) Drift and “statistically abstractive explanation”. Philos Sci 76(4):464–487
Matthen M, Ariew A (2002) Two ways of thinking about fitness and natural selection. J Philos 

99(2):55–83
Merlin F (2010) Evolutionary chance mutation: a defense of the modern synthesis’ consensus view. 

Philos Theory Biol 2:e103
Merlin F (2016) Weak randomness at the origin of biological variation: the case of genetic mutations. In: 

Ramsey G, Pence CH (eds) Chance in evolution. University of Chicago Press, Chicago, pp 176–195
Millstein RL (2003) Interpretations of probability in evolutionary theory. Philos Sci 70:1317–1328
Millstein RL (2006) Natural selection as a population-level causal process. Br J Philos Sci 57(4):627–653
Millstein RL (2008) Distinguishing drift and selection empirically: “The Great Snail Debate” of the 

1950s. J History Biol 41(2):339–367
Millstein RL (2011) Chances and causes in evolutionary biology: how many chances become one chance. 

In: Illari PM, Russo F, Williamson J (eds) Causality in the sciences. Oxford University Press, 
Oxford, pp 425–444

Millstein RL (2016) Probability in biology: the case of fitness. In: Hájek A, Hitchcock C (eds) The 
Oxford handbook of probability and philosophy. Oxford University Press, Oxford, pp 601–622

Mulcahy DG, Noonan BP, Moss T, Townsend TM, Reeder TW, Sites JW, Wiens JJ (2012) Estimating 
divergence dates and evaluating dating methods using phylogenomic and mitochondrial data in 
squamate reptiles. Mol Phylogenetics Evol 65(3):974–991

Nascimento FF, dos Reis M, Yang Z (2017) A biologist’s guide to Bayesian phylogenetic analysis. Nat 
Ecol Evol 1(10):1446–1454

Otsuka J (2016) A critical review of the statisticalist debate. Biol Philos 31(4):459–482
Pence CH (2017) Is genetic drift a force? Synthese 194(6):1967–1988
Pence CH, Ramsey G (2013) A new foundation for the propensity interpretation of fitness. Br J Philos Sci 

64(4):851–881
Rannala B, Yang Z (2007) Inferring speciation times under an episodic molecular clock. Syst Biol 

56(3):453–466
Ronquist F, Klopfstein S, Vilhelmsen L, Schulmeister S, Murray DL, Rasnitsyn AP (2012) A total-evi‑

dence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst Biol 
61(6):973–999

Rosenberg A (1994) Instrumental biology, or the disunity of science. University of Chicago Press, 
Chicago

Sanderson MJ (1997) A nonparametric approach to estimating divergence times in the absence of rate 
constancy. Mol Biol Evol 14(12):1218–1231

Schwartz JH, Maresca B (2006) Do molecular clocks run at all? A critique of molecular systematics. Biol 
Theory 1(4):357–371



1 3

Locating uncertainty in stochastic evolutionary models:… Page 19 of 19     21 

Sober E (2011) A priori causal models of natural selection. Australas J Philos 89(4):571–589
Stamos DN (2001) Quantum indeterminism and evolutionary biology. Philos Sci 68(2):164–184
Strevens M (2011) Probability out of determinism. In: Beisbart C, Hartmann S (eds) Probabilities in 

physics. Oxford University Press, Oxford, pp 339–364
Strevens M (2013) Tychomancy: inferring probability from causal structure. Harvard University Press, 

Cambridge
Strevens M (2016) The reference class problem in evolutionary biology: distinguishing selection from 

drift. In: Ramsey G, Pence CH (eds) Chance in evolution. University of Chicago Press, Chicago, pp 
145–175

Thorne JL, Kishino H (2002) Divergence time and evolutionary rate estimation with multilocus data. Syst 
Biol 51(5):689–702

Thorne JL, Kishino H, Painter IS (1998) Estimating the rate of evolution of the rate of molecular evolu‑
tion. Mol Biol Evol 15(12):1647–1657

Turner D (2005) Local underdetermination in historical science. Philos Sci 72(1):209–230
Walsh DM (2007) The pomp of superfluous causes: the interpretation of evolutionary theory. Philos Sci 

74(3):281–303
Walsh DM, Lewens T, Ariew A (2002) The trials of life: natural selection and random drift. Philos Sci 

69(3):429–446
Walsh DM, Ariew A, Matthen M (2017) Four pillars of statisticalism. Philos Theory Pract Biol 9:1
Weisberg M (2014) Understanding the emergence of population behavior in individual-based models. 

Philos Sci 81(5):785–797
Werndl C (2013) On choosing between deterministic and indeterministic models: underdetermination and 

indirect evidence. Synthese 190(12):2243–2265
Wilkinson RD, Steiper ME, Soligo C, Martin RD, Yang Z, Tavaré S (2011) Dating primate divergences 

through an integrated analysis of palaeontological and molecular data. Syst Biol 60(1):16–31
Yang Z, Rannala B (2006) Bayesian estimation of species divergence times under a molecular clock using 

multiple fossil calibrations with soft bounds. Mol Biol Evol 23(1):212–226
Zuckerkandl E, Pauling L (1965) Molecules as documents of evolutionary history. J Theor Biol 

8(2):357–366

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.


	Locating uncertainty in stochastic evolutionary models: divergence time estimation
	Abstract
	Introduction
	Building models of divergence time estimation
	Understanding uncertainty
	Model uncertainties and biological probabilities
	A way forward
	Acknowledgements 
	References




